PROBLEM BASED ON P(A)=n(A)/n(B)
PROBLEM 1.
Find the probability that exactly one head appears in a single throw of a fair coin
Solution: Here throw a single coin get a sample space
$ S = \lbrace H,T \rbrace $
$ n(S) = 2 $
$ n(S) = 2 $
Let A be a event of getting exactly one head in a single throw of a fair coin
$ A = \lbrace H \rbrace $
$n(A) = 1 $
$ P(A) = \frac{n(A)}{n(S)} $
$ \therefore P(A) = \frac{1}{2} $
$n(A) = 1 $
$ P(A) = \frac{n(A)}{n(S)} $
$ \therefore P(A) = \frac{1}{2} $
*------------------------------------------------------------------------------------*
A lot of integrated circuit chips consists of 10 good,4 with minor defects and 2 with major defects.Two chips are randomly chosen from the lot.What is the probability that at-least one chips is good?
Solution: Here
Integrated circuit chips Good Minor defect Major defect Total
10 4 2 16
10 4 2 16
Let S be chosen two chips randomly selected from the lot of integrated circuit.
$ n(S) = n C_{r}$ use \enspace combination \enspace property
$ = 16 C_{2} $ [n=16 is total chips r=2 is select two chips randomly]
$ = \frac{16!}{(16-2)! 2!}$ $ [n C_{r}=\frac{n!}{(n-r)! r!}]$
$ = \frac{14!\times 15 \times 16}{14! \times 2!}$ $ [n!=1\times2\times \dots (n-1)\times n ] $
$ = \frac{15 \times 16}{2 \times 1}$ [cancel common term]
$ = 15 \times 8 $
$ n(S) = 120$ [Another way use calculator fx-991MS]
Lex X(0,1,2) choose are good chips
Lex X(0,1,2) choose are good chips
X=0 $ \implies$ P(X=0) =$ \frac{10C_0 \times 6C_2 }{12C_2}$ [X=0 means selected no good chips ]
$ = \frac{1 \times 15 }{120} $ [$10C_0=1,6C_2=15,12C_2=120 $ use above $ nC_r $ step ]
$ = \frac{15}{120}$ [use calculator fx-991MS ]
$ = \frac{1}{8}$ [cancel common term ]
X=1 $ \implies $ P(X=1) = $ \frac{10C_1 \times 6C_1 }{12C_2} $ [X=1 selected one good chips ]
$ = \frac{1 \times 15 }{120} $ [$10C_0=1,6C_2=15,12C_2=120 $ use above $ nC_r $ step ]
$ = \frac{15}{120}$ [use calculator fx-991MS ]
$ = \frac{1}{8}$ [cancel common term ]
X=1 $ \implies $ P(X=1) = $ \frac{10C_1 \times 6C_1 }{12C_2} $ [X=1 selected one good chips ]
$ = \frac{10 \times 6 }{120}$ [$ 10C_1=10,6C_1=6,12C_2=120 $ use above $ nC_r $ step ]
$ = \frac{60}{120} $ [use calculator fx-991MS ]
$ = \frac{1}{2} $ [cancel common term ]
X=2 $ \implies $ P(X=2)= $ \frac{10C_2 \times 6C_0 }{12C_2}$ [X=2 means selected two good chips ]
$ = \frac{45 \times 1 }{120}$ [$ 10C_2=45,6C_0=1,12C_2=120 $ use above $ nC_r $ step ]
$ = \frac{45}{120}$ [use calculator fx-991MS ]
$ = \frac{3}{8}$ [cancel common term ]
The Probability Functions
$ X=x_i$ 0 1 2
$ P(X=x_i)$ $\frac{1}{8}$ $\frac{1}{2}$ $\frac{3}{8}$
Let X be a probability of atleast one good chips are good
$ = \frac{1}{2} $ [cancel common term ]
X=2 $ \implies $ P(X=2)= $ \frac{10C_2 \times 6C_0 }{12C_2}$ [X=2 means selected two good chips ]
$ = \frac{45 \times 1 }{120}$ [$ 10C_2=45,6C_0=1,12C_2=120 $ use above $ nC_r $ step ]
$ = \frac{45}{120}$ [use calculator fx-991MS ]
$ = \frac{3}{8}$ [cancel common term ]
The Probability Functions
$ X=x_i$ 0 1 2
$ P(X=x_i)$ $\frac{1}{8}$ $\frac{1}{2}$ $\frac{3}{8}$
Let X be a probability of atleast one good chips are good
P(atleast one is good) = P($ X \geq 1$)
= P(X=1)+P(X=2)
$=\frac{1}{2}+\frac{3}{8} $ [by above table ]
$ = \frac{4+3}{8}$
$ = \frac{7}{8}$
$ = \frac{4+3}{8}$
$ = \frac{7}{8}$
*----------------------------------------------------------------------------------------------*
No comments:
Post a Comment