PROBLEMS BASED ON INDEPENDENT EVENTS OR NOT MUTUALLY EXCLUSIVE EVENTS
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$ (OR) $ P(A \cap B)=P(A).P(B)$
EXAMPLE 1
One card drawn from a deck of 52 cards. what is the probability of the card being either a red or a king
Solution: Given total number of card is 52
$ n(S)=52 $
Let A be a event that the card drawn is red
$ n(A)=26 $
$ P(A)=\frac{n(A)}{n(S)}=\frac{26}{52}=\frac{1}{2} $
Let B be a event that the card drawn is king
$ n(B)=4 $
$P(B)=\frac{n(B)}{n(S)}=\frac{4}{52}=\frac{1}{13} $
Here $A \cap B$ there are red colored of king card
$ n(A\cap B)=2 $
$ P(A \cap B )= \frac{n(A\cap B)}{n(S)} =\frac{2}{52}=\frac{1}{26} $
.
$ P(A \cup B) = P(A)+P(B)- P(A \cap B ) $ [ A and B are not mutually exclusive events]
$ = \frac{1}{2}+\frac{1}{13}-\frac{1}{26} $ [$ P(A)=\frac{1}{13}$ P(B)=$ \frac{1}{13}$ ]
$ = \frac{13+2-1}{26}$
$ = \frac{14}{26}$
$ P(A \cup B) = \frac{7}{13} $
*_________________________________________________________________________*
EXAMPLE 2:
A is known to hit the target in 2 out of 5 shots whereas B is known to hit the target in 3 out of 4 shots.Find the probability of the target being hit when they both try?
Solution:
Let A be a event of that 'A' hit the target
$ P(A)=\frac{2}{5} $ Given
Let B be a event of that 'B' hit the target
$ P(B)=\frac{3}{4} $ Given
$ P(A \cup B) = P(A)+P(B)-P(A \cap B) $
$ = P(A)+P(B)-P(A) .P( B) $ [ A and B are independent event]
$ = \frac{2}{5}+\frac{3}{4}-\left( \frac{2}{5}.\frac{3}{4} \right) $
$ = \frac{8+15}{20}-\frac{6}{20}$
$ = \frac{23-6}{20} $
$ P(A \cup B) = \frac{17}{20} $
*_________________________________________________________________________*
No comments:
Post a Comment