Wednesday, April 21, 2021

RANDOM VARIABLE-DISCRETE RANDOM VARIABLE

April 21, 2021 0 Comments

 RANDOM VARIABLE

RANDOM VARIABLE

 A real valued function defined on the outcome of a probability experiment is called a random variable

*________________________________________________*

PROBABILITY DISTRIBUTION FUNCTION OF X

 If X is a random variable, then the function F(x),defined by $F(x)=P\lbrace X \leq x \rbrace $ is calle the distribution function of X

    *________________________________________________*

DISCRETE RANDOM VARIABLE

 A random variable whose set of possible values is either finite or infinite countably infinite is called discrete random variable

    *________________________________________________*

PROBABILITY MASS FUNCTION

If X is a discrete random variable, then the function $P(x)=P[X=x] $ is called the probability mass function of X

    *________________________________________________*

PROBABILITY DISTRIBUTION

The value assumed by the random variable X presented with corresponding probabilities is known as the probability is known as the probability distribution of X


\(X \) \(x_1 \) \(x_2 \) \(x_3 \)
\(P(X=x)\) \(P_1\) \(P_2\) \(P_3\)                                          


   *________________________________________________*

CUMULATIVE DISTRIBUTION OR DISTRIBUTION FUNCTION OF X (FOR DISCRETE RANDOM VARIABLE)

The cumulative distribution function F(x) of a discrete random variable X with probability distribution P(x) is given by
\[ F(x)=P(X \leq x) = \sum_{t\leq x} p(t) \qquad x=-\infty,\dots,-2,-1,0,1,2,\dots,\infty  \]

   *________________________________________________*

PROPERTIES OF DISTRIBUTION FUNCTION


(1.) $F(-\infty)=0$

(2.) $F(\infty)=1$

(3.) $0 \leq F(x) \leq 1$

(4.) $F(x_1)\leq F(x_2) \quad if x_1< x_2$

(5.) $P(x_1 < X \leq x_2)=F(x_2)-F(x_1)$

(6.) $P(x_1 \leq X \leq x_2)=F(x_2)-F(x_1)+P[X=x_1]$

(7.) $P(x_1 < X < x_2)=F(x_2)-F(x_1)-P[X=x_2]$

(8.) $P(x_1 \leq X < x_2)=F(x_2)-F(x_1)-P(X=x_2)+P(X=x_1)$

   *________________________________________________* 

RESULTS

(1) $P(X \leq \infty )=1$

(2) $P(X \leq -\infty)=0$

(3) If $ x_1 \leq x_2 $ then $P(X=x_1)\leq P(X=x_2)$

(4) $P(X>x)=1-P[X \leq x]$

(5) $P(X \leq x)=1-p(X>x)$

   *________________________________________________*

EXPECTED VALUE OF A DISCRETE RANDOM VARIABLE X

Let X be a discrete random variable assuming values $x_1,x_2,\dots,x_n$ with corresponding probabilities $P_1,P_2,\dots,P_n$ then \[ E(x)=\sum_{i} x_i p(x_i) \] is called the expected value of X
$E(x)$ is also called commonly the mean or the exception of X.A useful identity states that for a function g \[ E(g(x))=\sum_{x_i} g(x_i) p(x_i)  \]
   *________________________________________________*

THE VARIANCE OF A RANDOM VARIABLE X

It is defined by $Var(X)=E[x-E(X)]^2$\\

The variance which is equal to the expected value of the square of the difference between X and its expected value.It is a measure of the spread of the possible values of X.\[ Var(X)=E[X^2]-[E(X)]^2 \] the quantity $\sqrt{Var(x)}$ is called the \textbf{Standard deviation of X}
   *________________________________________________*

FORMULA

(1) $\sum_{i}p(x_i)=1$

(2) $F(x)=P[X\leq x]$    e.g...$P[X\leq 4]=F[4]=P(0)+P(1)+P(2)+P(3)+P(4)$

(3) $P(1)=F(1)-F(0)$
     $P(2)=F(2)-F(1)$
     $P(3)=F(3)-F(2)$
 
(4) Mean=$E(x)=\sum x_i p(x_i)$=Expected value
 
(5) $E[X^2]=\sum x_i^2 p(x_i)$
 
(6) Variance=$Var[X]=E[X^2]-[E(X)]^2$
 
(7) $E[aX+b]=aE[X]+b$
 
(8) $Var[aX \pm b]=a^2 Var X$
 
(9) Probability mass function $p(x)=P[X=x]$
 
(10) Standard distribution =$\sqrt{Var(X)}$
  *________________________________________________* 
 
Theorem1:
    Prove that $E(aX+b)=aE(X)+b$


 
 $   E[aX+b] =\sum_{x_i} (ax_i+b)p(x_i) $                    [ $ E(x)=\sum x_i p(x_i)  $]
 
 $                =\sum_{x_i} [ ax_i p(x_i)+b p(x_i) ] $              [ Distributive  Property $ (a+b)\times c =(a\times c)+(b \times c)$ ]
    
                $ = a \sum_{x_i} x_i p(x_i)+b\sum  p(x_i)$                   [$  \sum [a+b]=\sum a+\sum b $ ]
  
                $= aE(X) +b $                        [  E(x)= $ \sum x_i p(x_i) \sum p(x_i)= 1$]
    
$ E[aX+b] =aE(X) +b $
 
         HENCE PROVED
*________________________________________________* 

theorem

    If X is random variable then show that \[ Var(aX+b)=a^2 X+b \]


    Let Y=aX+b
    E(Y) =E[aX+b]
 
We know that ,theorem1   E[aX+b]=aE(X) +b

E(Y) =E[aX+b]
 
        = aE(X) +b                                 [E[aX+b]=aE(X) +b]
 
-E(Y)  =- aE(X) +b                                               [Multiple  -1   both   side]
 
Y-E(Y)  =Y - aE(X) +b                                          [ Add   Y   on   both   side]
 
Y-E(Y)  =(aX+b) - aE(X) +b                                [Y=aX+b]
 
Y-E(Y) =aX+b - aE(X) +b
 
Y-E(Y) =aX-aE(X)                                                 [Cancelled  b]
 
Y-E(Y) =a[X-E(X)]                                                [Take common  term   a ]
 
$ [Y-E(Y)]^2  =[ a[X-E(X)] ]^2  $                       [Square  on both  side ]
 
$ Var(Y) = a^2 Var(x) $ [$ Var(Y)=[Y-E(Y)]^2 ,   Var(x) = [X-E(X)]^2,   (ab)^2=a^2 b^2 $ ]
 
$ Var(aX+b)  = a^2 Var(x)  $                              [Y=aX+b]

i.e.., $ Var(aX+b) = a^2 Var(x)  $

HENCE PROVED
*________________________________________________*  

RESULT


 $\star$ $p[X=x_i]=p(x)$
    $\to $ Probability function (or) Probability distribution (or) Probability mass function (p.m.f)
   
$\star$ $f(x)\to$ Probability density function (p.d.f) (or) density function
   
$\star$  $F(x) \to $ Cumulative distribution function (c.d.f) (or) distribution function

 
*________________________________________________*  

PROBLEMS UNDER THE DISTRIBUTION FUNCTION FOR DISCRETE RANDOM VARIABLE

Example 1
    For the following probability distribution (i)Find the distribution function of X.(ii) What is the smallest value of x for which \boldmath $p(X\leq x) > 0.5$

Wednesday, April 14, 2021

CONDITIONAL PROBABILITY

April 14, 2021 0 Comments

 

CONDITIONAL PROBABILITY

MARGINAL PROBABILITY

A Probability of only one event that takes places is called a marginal probability.


    * _______________________________________________________*

JOINT PROBABILITY

 
The probability of occurrence of both events A and B together,denoted by  $P(A \cap B)$   is known as joint probability A and B .

   * _______________________________________________________*


CONDITIONAL PROBABILITY

The conditional probability of A given B is $ P(A/B)=\frac{P(A \cap B) }{P(B}$   if $ P(B) \neq 0 $  and it is undefined otherwise.A rearrangement of the above definition yields the following: 

MR(Multiplication Rule)

 $ P(A \cap B) $  =$ P(B)P(A/B) \enspace if P(B) \neq 0 $
                         $ P(A)P(B/A) \enspace if P(A) \neq 0 $
                          $0$             otherwise}

Notes:

  $P(A/B) $ means the conditional probability of A and B.
  $ P(B/A) $ means the conditional probability of A and B

    

   * _______________________________________________________*


 THEOREM 1 If  P(A) >P(B)  then $ P(A/B)>P(B/A)$
proof

 
$ P(A/B)= \frac{P(A \cap B )}{P(B)} $

$ P(B)= \frac{P(A \cap B )}{P(A/B)} $

$  P(B/A)= \frac{P(A \cap B )}{P(A)} $

$ P(A)= \frac{P(A \cap B )}{P(B/A)} $

If P(A) >P(B)  $ \frac{P(A \cap B )}{P(B/A)} > \frac{P(A \cap B )}{P(A/B)}$
and $  P(A/B) > P(B/A)$

   * _______________________________________________________* 

EXAMPLE 1
A box contains  4 bad and 6 good tubes.Two are drawn out from the box at a time.One of them is tested and found to be good.What is the probability that the one is also good?


Solution

               Bad Tubes       Good Tubes        Total

                                         6                    10   
 

$ P(A \cap B) =  P $                  [both  the  tubes  are  good ]                    

                   $ = \frac{6C_2}{10C_2}$

                    $ =  \frac{\frac{6.5}{1.2}}{\frac{10.9}{1.2}} $         [$ nC_r=\frac{n!}{(n-r)!r!}$]

                    $ = \frac{6.5}{10.9}$             [ cancel  common  term]

                    $ = \frac{1}{3} $                 [ cancel common  term]

 $ P(A \cap B) = \frac{1}{3} $ 


P(A) = P[one tubes  drawn   good]

$ = \frac{6}{10}$ 

$ P(A) = \frac{3}{5} $

That one tube is good, the conditional probability that the other tube is also good is required

$ P(B/A) = \frac{P(A \cap B )}{P(A)} $ 

$ = \frac{\frac{1}{3}}{\frac{3}{5}}  $                      [ $ P(A \cap B) = \frac{1}{3}$ $P(A) = \frac{3}{5} $] 

$= \frac{1}{3} \times \frac{5}{3} $ 

$ P(B/A) = \frac{5}{9}  $ 


  * _______________________________________________________*

INDEPENDENT EVENTS OR NOT MUTUALLY EXCLUSIVE EVENTS

April 14, 2021 0 Comments

 PROBLEMS BASED ON INDEPENDENT EVENTS OR NOT MUTUALLY EXCLUSIVE EVENTS

$P(A \cup B)=P(A)+P(B)-P(A \cap B)$ (OR) $ P(A \cap B)=P(A).P(B)$

EXAMPLE 1
 One  card drawn from a deck of 52 cards. what is the probability of the  card being either a red or a king 


Solution:  Given total number of card is 52

$  n(S)=52 $

Let A be a event that the card drawn is red
$ n(A)=26 $
$ P(A)=\frac{n(A)}{n(S)}=\frac{26}{52}=\frac{1}{2} $

Let B be a event that the card drawn is king

$ n(B)=4 $
$P(B)=\frac{n(B)}{n(S)}=\frac{4}{52}=\frac{1}{13} $

Here $A \cap   B$  there are red colored of king card

$ n(A\cap B)=2 $
$ P(A \cap B )= \frac{n(A\cap B)}{n(S)} =\frac{2}{52}=\frac{1}{26} $
.
$ P(A \cup  B) = P(A)+P(B)- P(A \cap B ) $          [   A  and B  are  not mutually exclusive  events]
                    $ = \frac{1}{2}+\frac{1}{13}-\frac{1}{26} $                             [$ P(A)=\frac{1}{13}$ P(B)=$ \frac{1}{13}$ ]
                     $ =  \frac{13+2-1}{26}$
                        $ = \frac{14}{26}$
$ P(A \cup  B) = \frac{7}{13} $
 

*_________________________________________________________________________*

EXAMPLE 2:
A is known to hit the target in 2 out of 5 shots whereas B is known to hit the target in 3 out of  4 shots.Find the probability of the target being hit when they both try?


Solution:
Let A be a event of that 'A' hit the target

$ P(A)=\frac{2}{5}  $                     Given

Let B be a event of that 'B' hit the target

$  P(B)=\frac{3}{4} $                      Given

$ P(A \cup B) = P(A)+P(B)-P(A \cap B) $
                    $ =  P(A)+P(B)-P(A) .P( B)  $                 [  A  and  B   are independent   event]
                    $ = \frac{2}{5}+\frac{3}{4}-\left( \frac{2}{5}.\frac{3}{4} \right) $
                    $ = \frac{8+15}{20}-\frac{6}{20}$
                    $ = \frac{23-6}{20} $
    $ P(A \cup B) = \frac{17}{20} $



*_________________________________________________________________________*


PROBLEMS BASED ON MUTUALLY EXCLUSIVE EVENTS OR DISJOINT EVENTS

April 14, 2021 0 Comments

 

PROBLEMS BASED ON MUTUALLY EXCLUSIVE EVENTS OR DISJOINT EVENTS

$ { P(A \cup B)=P(A)+P(B)}  $ (OR) $ { P(A + B)=P(A)+P(B)}$

EXAMPLE 1
One cards is drawn from a pack of 52 cards.What is the probability that it is either a king or a queen.


Solution   Given total number of  card is 52

     $ \therefore n(S)=52 $

Let A be a event that the card drawn is king

$ n(A)=4 $
$ P(A)=\frac{n(A)}{n(S)}=\frac{4}{52}=\frac{1}{13} $

Let B be a event that the card drawn is queen

$ n(B)=4 $
$ P(B)=\frac{n(B)}{n(S)}=\frac{4}{52}=\frac{1}{13} $

Here A  and B are disjoint events since both cannot occur together
.
$ P(A \cup  B) = P(A)+P(B) $        [  A   and    B  are   mutually exclusive   events]
$ = \frac{1}{13}+\frac{1}{13} $         [$ P(A)=\frac{1}{13} P(B)=\frac{1}{13}$]
$ P(A \cup  B) = \frac{2}{13}$

 *___________________________________________________________________*

EXAMPLE 2
From a group of 5 first year,4 second year and 4 third year students,3 students are selected at random.Find the probability that they are first year or third year students.


Solution: Given

First year      Second year      Third year       Total
5                     4                             4                  13

Three students are selected at random in total  number of students

$  n(S)= {}^{13}C_3=286 $       [ $  {}^nC_r=\frac{n!}{(n-r)!r!} $ ]

Let A be three students selected from the first year students

$ n(A) = {}^5C_3=10 $             [$ {}^nC_r=\frac{n!}{(n-r)!r!}$ ]   

$P(A) =  \frac{n(A)}{n(S)}=\frac{10}{286}$


Let B be three students selected from the third year students

$ n(B) = {}^4C_3=4 $          [$ {}^nC_r=\frac{n!}{(n-r)!r!}$ ]
$ P(B) = \frac{n(B)}{n(S)}=\frac{4}{286} $

Here A  and B are disjoint events since both cannot occur together.

$ P(A \cup  B) = P(A)+P(B) $         [  A  and   B   are mutually  exclusive    events]
                   $ = \frac{10}{286}+\frac{4}{286} $             [$ P(A)=\frac{10}{286} P(B)=\frac{4}{286}$ ]
$ P(A \cup  B)  =  \frac{14}{286} $
                   $ = \frac{7}{143} $




 *___________________________________________________________________*






BA5106 STATISTICS FOR MANAGEMENT-UNIT V-MCQ

April 14, 2021 0 Comments

 

 BA5106

STATISTICS FOR MANAGEMENT

UNIT-V-CORRELATION AND REGRESSION

MULTI CHOICE QUESTIONS

1. The covariance is
 
(A)  A measure of the strength of relationship between two variables
(B)  Dependent on the units of measurement of the variables
(C)  An unstandardized version of the correlation coefficient
(D)  All of these
 
  2. Rank the score of 5 in the following set of scores:
        9, 3, 5, 10, 8, 5, 9, 7, 3, 4

(A)   3
(B)  4
(C)  4.5 
(D)   6

3. Which of the following statistical tests allows causal inferences to be made?  

(A)  Analysis of variance
(B)  Regression
(C)  None of these, it’s the design of the research that determines whether causal inferences can be made 
(D)  t-test

4.R2 is known as the

(A)  Multiple correlation coefficient.
(B)  Partial correlation coefficient.
(C)  Coefficient of determination. 
(D)  Semi-partial correlation coefficient.  

5.Which of the following statements about outliers is not true? 

(A)  Outliers are values very different from the rest of the data.
(B)  Outliers have an effect on the mean.
(C)  Influential cases will always show up as outliers 
(D)  Outliers have an effect on regression parameters.   
 
6. For which regression assumption does the Durbin–Watson statistic test?

(A) Independence of errors
(B)  Linearity
(C)  Multi collinearity
(D)  Homeostatic     

7.Which of the following is not an assumption for the Pearson’s correlation analysis?

(A)  Normally distributed variables
(B)  Monotonic relationship
(C)  Linear relationship
(D)  Constant variance       

8.What is the primary purpose of Pearson’s and Spearman’s correlation coefficients?

(A)   Identifying deviations from normality for continuous variables
(B)  Examining the relationship between two categorical variables
(C) Examining the relationship between two non categorical variables
(D) Comparing means across group  

9.Which of the following would be considered a very strong negative correlation?

(A) 0.89
(B)  -0.9
(C ) 0.09
(D) -0.89

10.Which test is used to determine whether a correlation coefficient is statistically significant?

(A)   Paired samples t-test
(B)   Chi-squared test
(C)   P-value  
(D)  One-sample t-test
 
11.Which of the following is not an assumption for simple linear regression?

(A) Normally distributed variables
(B) Constant variance
(C) Multicollinearity 
(D) Linear relationship     

12. Continuous predictors influence the_________ of the regression line, while categorical predictors influence the _____________

(A)  p-value,$R^2$
(B)  $R^2$, p-value
(C) intercept, slope
(D)  slope, intercept      

13.Which of the following is true about the adjusted $R^2$?  

(A) It is usually smaller than the $R^2$ 
(B) It is usually larger than the $R^2$   
(C) It is only used when there is just one predictor
(D) It is used to determine whether residuals are normally distributed     

14. The $R^2$ is the squared correlation of which two values?

(A)  y and each continuous x
(B) y and the predicted values of y 
(C)  b and t
(D)  b and se

15.Following are the elements of correlation except

(A)  There should be three or more variables
(B)  The change in the value of one affects another
(C)  There should be relationship among them
(D)  There should be only curvilinear relations among variables
 
16.If with the fall in the value of one variable the value of another variable rises in the same proportion then it is said to be

(A)  None
(B) Both
(C)  Negatively correlated
(D)  Positively correlated

17. Two variables are said to be positively correlated when with ________  in the value of one variable, the value of other variable also ________

(A)   Rise , Falls
(B)   No change, Rises
(C)  Fall, Rises
(D)  Fall , falls 
 
18.If the coefficient correlation exactly equals to -1 then it will be effect     
   
(A)  Simple correlation
(B)  Negative  correlation
(C)  Positive correlation
(D)  Multiple correlation

19. When the correlation is only studied between two variables it is called  

(A) Simple correlation    
(B)  Positive correlation
(C)  Multiple correlation
(D)  Negative correlation 

20.Multiple correlation is

(A)   When the correlation is only studied between four variables
(B)  When the correlation is studied between three or more variables 
(C)   When the correlation is only studied between two variables
(D)  When the correlation is only studied between three variable

21.  the ratio of change between the two variables is a constant then there will be

(A)  Non-linear correlation
(B)  Linear correlation
(C)   Negative correlation
(D)  Positive correlation

22.  While drawing a scatter diagram if all points appear to form a straight line going downward from left to right, then it is inferred that there is _________

(A)  No correction
(B)  Simple positive correlation
(C)  Perfect positive correction
(D)  Perfect negative correlation  

23.  Correlation coefficient is denoted by
 
(A)  co
(B)   l
(C)  c
(D)   r }

24. Who was a great biometrician and statistician?

(A)  Kally Pearson
(B)   Kaerl Pearson
(C)  Karl Pearson
(D)   Kal Pearson

25. When r = 1, there is perfect

(A) perfect + ve relationship between the variables   
(B)  perfect -ve relationship between the variables
(C)  No relationship between the variables
(D)  None
 
26.What is the range of simple correlation coefficient?

(A)  1< r < 1
(B) -1< r < 1
(C)  1> r > 1
(D)  1< r > 1

27.Which method of measuring correlation measures any type of relationship?

(A) Karl Pearson’s coefficient of correlation    
(B) Spearman’s rank correlation.
(C) Both
(D) None

28.If cov(x,y) = 0 then 

(A) x and y are correlated
(B) x and y are uncorrelated   
(C) x and y are linearly related
(D) None

29. Correlation coefficient is independent of change of

(A) scale
(B) Origin
(C) Scale and origin     
(D) None

30. Rank Correlation was found by

(A) Galton
(B) Spearman    
(C) Fisher
(D) Pearson

31.The number of observation in regression analysis is considered as 

(A) Degree of average
(B) Degree of possibility
(C) Degree of freedom   
(D) Degree of variance

32.All the conditions or assumption of regression analysis  in simple regression can give

(A) Dependent Estimation
(B) Independent Estimation
(C) Reliable Estimates 
(D) Unreliable Estimates

33.The standard error of regression analysis known as

(A) Average of coefficient
(B) Mean of residual
(C) Variance of residual   
(D) Average of residual

34.In regression Analysis,the testing assumption if these are true or not is classified as   

(A) Specification Analysis 
(B)   Significance Analysis
(C)   Average Analysis
(D)  Weighted Analysis

35.The correlation coefficient is

(A)  $r(X,Y)=\frac{\sigma_x \sigma_y}{cov(x,y)}$
(B)  $r(X,Y)=\frac{cov(x,y)}{\sigma_x \sigma_y }$    
(C)  $r(X,Y)=\frac{cov(x,y)}{ \sigma_y }$
(D)  $r(X,Y)=\frac{cov(x,y)}{\sigma_x  }$
 
36. The variable which influences the value or is used for prediction is called  

(A)  Dependent Variable
(B) Independent Variable     
(C)  Explained Variable
(D)  Regressed

37.The correlation coefficient
 
(A) $r=\pm b_{xy}\times b_{yx}$
(B)  $r=\pm \sqrt{b_{xy}+ b_{yx}}$
(C)  $r=\pm \sqrt{b_{xy} -b_{yx}}$
(D)  $r=\pm \sqrt{b_{xy}\times b_{yx}}$}     

38. The regression coefficient of X on y

(A)  $b_{xy}=\frac{N \sum dx dy+ (\sum dx)(\sum dy)}{N \sum dy^2-(\sum dy)^2}$
(B) $b_{xy}=\frac{N \sum dx dy-(\sum dx)(\sum dy)}{N \sum dy^2-(\sum dy)^2}$}  
(C)  $b_{yx}=\frac{N \sum dx dy+(\sum dx)(\sum dy)}{N \sum dy^2-(\sum dy)^2}$
(D)  $b_{yx}=\frac{N \sum dx dy+(\sum dx)(\sum dy)}{N \sum dy^2+(\sum dy)^2}$

39.The regression coefficient of Y on X

(A)  $b_{yx}=\frac{N \sum dx dy+ (\sum dx)(\sum dy)}{N \sum dx^2-(\sum dx)^2}$
(B)  $b_{yx}=\frac{N \sum dx dy-(\sum dx)(\sum dy)}{N \sum dx^2-(\sum dx)^2}$
(C)   $b_{xy}=\frac{N \sum dx dy+(\sum dx)(\sum dy)}{N \sum dx^2-(\sum dx)^2}$
(D)   $b_{xy}=\frac{N \sum dx dy+(\sum dx)(\sum dy)}{N \sum dx^2+(\sum dx)^2}$

40.When one regression coefficient is negative , the other would be 

(A)  Negative

(B) Positive
(C)  Zero
(D)   None of these
 
41. If X and Y  are two variate, there can be almost  

(A)  One regression line
(B)  Three regression line
(C) Two regression line
(D) More regression line

42.The lines of regression of X and Y estimates

(A)  Y for a given value of X
(B)  X for a given value of Y    
(C)  X from Y and Y from X
(D)  None of these

43.Scatter diagram of the variate value (X,Y) give the idea  about
 
(A ) Functional relationship    
(B)   Regression model
(C)  Distribution of errors
(D)  No relation

44. If two variable moves in degreasing direction then  the correlation is  

(A)   Perfect negative
(B)    Negative
(C) Positive    
(D)  No correlation

45. The line of regression intersect at the point  

(A)   (X,Y)
(B)   (0,0)
(C)   $(\sigma_x,\sigma_y)$
(D)  $(\bar{X},\bar{Y})$ 
 
46. The coefficient correlation describes 

(A)  Only magnitude
(B)  only direction
(C)  no magnitude and no direction
(D)  The magnitude and direction

47. The regression coefficient of Y on X is 2, then the regression coefficient of X on y is 

(A)  $> \frac{1}{2}$
(B) $\leq \frac{1}{2}$ 
(C)   2
(D)  1

48. The regression analysis confined to the study of only two variables at a time is called the  _________

(A)  Linear regression
(B)   Multiple regression
(C) Simple regression  
(D)  Non linear regression

49.The regression analysis confined to the study of more than two  variables at a time is called the _________

(A) Linear regression
(B) Simple regression
(C)  Multiple regression}   
(D)  Non linear regression
  
50._________ the relationship between the two variables x and y is linear 

(A)  Multiple regression
(B)   Simple regression
(C)  Linear   regression  
(D)  Non linear regression
  


Sunday, April 11, 2021

BA5106 STATISTICS FOR MANAGEMENT-UNIT-IV -MCQ

April 11, 2021 0 Comments

 

 BA5106

STATISTICS FOR MANAGEMENT

UNIT-IV- NON-PARAMETRIC TESTS

MULTI CHOICE QUESTIONS

1.  The degrees of freedom for the Chi-Square test statistic when testing for independence in a contingency table with 4 rows and 4 columns would be


(A)   5
(B)   7
(C)   12
(D)   9}

2. The null hypothesis for the Chi-Square test of independence should specify

(A)  that the two categorical variables are independent
(B)   that the two numerical variables are dependent
(C)  that the two categorical variables are dependent
(D)  that the two numerical variables are independent

 3.Which of the following values of the Chi-Square test statistic would be most likely to suggest that the null hypothesis were really true?

(A)   23.7183
(B)   0.3251
(C)  14.9728
(D)  18.3445  

4.Which of the following values of the chi-square distribution cannot occur

(A)   0.61
(B)  38.4
(C)  -2.45
(D)  100     

5.The chi-square test can be used:

(A)  for pairwise multiple comparisons of means
(B)  to make inference about a population mean.
(C)  to test for homogeneity of proportions. 
(D)  to test for difference in two variances.           

6.To determine whether a set of observed frequencies differ from their corresponding expected frequencies, we could apply the

(A)  chi-square test
(B)   F test
(C)  t test dependent samples
(D)  t test independent samples      

7. When using the chi-square test for differences in two proportions with a contingency table that has r rows and c columns, the degrees of freedom for the test statistic will be

(A)  $n_1+n_2-1$
(B)  (r-1)(c-1)
(C)   n-1
(D)  (r-1)+(c-1)        

8. An alternative approach to utilizing the chi-square test for equality of c proportions would be to use the

(A)  z-test for proportions
(B)   one-way ANOVA
(C) chi-square test for independence
(D)  t-test     

9. What is the mean of a Chi Square distribution with 6 degrees of freedom?

(A)   4
(B)  12
(C)  8
(D)  6

10.Which Chi Square distribution looks the most like a normal distribution

(A)  A Chi Square distribution with 4 degrees of freedom
(B)   A Chi Square distribution with 5 degrees of freedom
(C)  A Chi Square distribution with 6 degrees of freedom
(D)  A Chi Square distribution with 16 degrees of freedom


11. The Mean of Chi Squared distribution is given as k. The Variance of Chi Squared distribution is ________

(A)   2+k
(B)   k
(C)  2k 
(D)  2-k       

12. The null hypothesis in the chi-square test states that

(A)   The rows and columns in the table are associated
(B)  Neither of the two
(C)  The rows in table are  associated
(D)  The rows and columns in the table are not associated     

13.  What is the formula used to calculate the $\chi^2$ statistic? 

(A) $\sum \frac{(O-E)^2}{E}$
(B)  $\sum \frac{(O+E)^2}{E}$    
(C)  $\sum \frac{(O\times E)^2}{E}$
(D)  $\sum \frac{(O-E)^2}{E^2}$      

14. What symbol is used to represent chi-square?

(A)  $\phi$  
(B)  $\chi^2$  
(C)   n
(D)  F

15.What is an effect size?

(A)    The number of expected cases
(B)  The chi-square value
(C)  The variance explained by the measures
(D)  The magnitude of the relationship between variables

16. Which of the following statement regarding the chi-square distribution  is false?

(A)  The chi square  goodness of fit always  one sided
(B)   The degree of freedom for a test of association is (r-1)(c-1) in contingency table with r rows and c columns
(C)  The chi square distribution is  very skew  to the  left
(D)  The chi square distribution can be used to test for normality

17. The major difference between the chi-square test of homogeneity and the chi-square test of independence is the

(A)   number of categories
(B)    sample size
(C) . size of the $\chi^2$ statistic
(D)  Method of sampling

18.The null hypothesis is rejected in a chi-square test of significance when

(A)  The test conditions are satisfied
(B) The $\chi^2$ statistic is larger than the critical value for the given level of significance
(C)  The P-value is larger than $1-\alpha$
(D)  The P-value is larger than $\alpha$ the level of significance

19. Which is the following is the explanatory variable in this study

(A)  Occupation    
(B)  Lung capacity
(C)  Smoking or not
(D)  Exercise  

20. Which is the following is the confounding variable in this study

(A)   Lung capacity
(B) Exercise
(C)    Smoking or not
(D)  Occupation

21. The sign test assumes that the samples are

(A)  Independent
(B) Dependent
(C)   Have the same mean
(D)  None of these

22. Comparing the times-to-failure of radar transponders made by firms A, B, and C, based on an airline’s sample experience with the three types of instruments, one may well call for:

(A)  A Kolmogorov-Smirnove test
(B)    A Wilcoxon rank-sum test 
(C)   A Spearman rank-correlation test
(D)  A Kruskal-Wallis test  

23. In a Wilcox on rank-sum test

(A)    Ties never affect the decision
(B)   Ties within one sample may affect the decision
(C)  Ties between the two samples may affect the decision
(D)   Ties always affect the decision 

24.The non parametric equivalent of an unpaired samples t-test is

(A)  Sign test
(B)  Wilcoxon signed-rank test
(C)  Mann-Whitney U test
(D)  Kruskal-Wallis test

25. Which of the following test is most likely assessing the null hypothesis of “the number of violations per apartment in the population of all city apartments is binomial distributed with a probability of success in any one trial of P=0.4”

(A)  The Kolmogorov-Smirnove test     
(B)  The Kruskal-Wallis test
(C)  The Mann-Whitney test
(D) The Wilcoxon signed-rank test

26. The Spearman rank-correlation test requires that the

(A)   Data must be measured on the same scale
(B)  Data at least ordinal scale
(C)   Data must be from two independent samples
(D)   Data must be distributed at least approximately as a t-distribution

27.Three brands of coffee are rated for taste on a scale of 1 to 10. Six persons are asked to rate each brand so that there is a total of 18 observations. The appropriate test to determine if three brands taste equally good is

(A)  Kruskal-Wallis test    
(B)  One way analysis of variance
(C)  Wilcoxon rank-sum test
(D)  Spearman rank difference

28.To perform a runs test for randomness the data must be

(A)  Divided into at least two classifications
(B)  Divided into exactly two classifications
(C)  Quantitative
(D)  Qualitative
 

29. In testing for the difference between two populations, it is possible to use

(A)  The Wilcoxon rank-sum test
(B)   The sign test
(C) Either of the above     
(D)   None of the these

30. If a Chi-square goodness of fit test has 6 categories and an N=30, then the correct number of degrees of freedom is

(A)  4
(B)  5    
(C)  28
(D)  29

31. The sign test is

(A)  More powerful than the pared sample t-test
(B)  More powerful than the Wilcox on signed-rank test
(C) Less powerful than that of the Wilcox on signed-rank test
(D)   Equivalent to the Mann-Whitney test

32.The Wilcox on rank-sum test can be

(A)  Upper tailed
(B) Lower tailed
(C) Either of upper tailed or lower tailed 
(D)   None of these

33. The Runs test results in rejecting the null hypothesis of randomness when

(A)  There is an unusually large number of runs
(B)   There is an unusually small number of runs
(C)  Either of the above  
(D) None of these

34. The Wilcoxon signed-rank is used

(A) Only in matched pairs samples
(B)  Only with independent samples
(C) As an alternative to the Kruskal-Wallis test
(D)  To test for randomness

35. The Mann-Whitney U test is preferred to a t-test when


(A) Data are paired
(B)  The assumption of normality is not met  
(C)   Sample sizes are small
(D)  Samples are dependent

36.  When testing for randomness, we can use

(A) Mann-Whitney U test
(B)  Runs test    
(C)  Sign test
(D)  None of these

37. Compare to parametric methods, the non parametric methods are

(A)  Less accurate
(B)  Less efficient
(C) Computationally easier
(D)  (b) and (c) but not (a)    

38. Which of the following test use rank sums?

(A)  F test
(B) Kruskal-Wallis and Wilcox on test
(C)  Chi-square and Sign tests
(D)   Runs test

39 .When using the Sign test, if two scores are tied, then we

(A)  Count them
(B)  Depends upon the scores
(C)  Discard them
(D)   None of these

40.  The Wilcox on rank-sum test compares

(A)  Two populations
(B)  Three or more populations
(C)  A sample mean to the population mean
(D)   None of these

41. In the Krystal-Wallis test of $k$ samples, the appropriate number of degrees of freedom is

(A)  $ K $
(B)   ${}^nC_{k} $
(C)  $ K-1 $
(D)   $ n-K $

42. Which of the following tests must be two-sided?

(A)  Krystal-Wallis test
(B)  Sign test   
(C)  Wilcox on Signed rank test
(D)  Runs test

43. A collection of statistical methods that generally requires very few, if any assumptions about the population distribution is known as

(A)  non-parametric methods     
(B)   parametric methods
(C)  semi parametric
(D)  none of the above

44.Which of the following tests would be an example of a non-parametric method?

(A)  Z-test
(B)  t-test
(C)  sign test     
(D)  all of the above

45. A non parametric version of the parametric analysis of variance test is

(A)  sign-test
(B)   Mann-Whitney-Wilcox on Test
(C)  Wilcox on Signed-rank test
(D)  Kruskal-Wallis Test      

46. A non parametric method for determining the differences between two populations based on two matched samples where only preference data is required is the 

(A)  Krystal-Wallis Test
(B) Mann-Whitney-Wilcox on test 
(C)  Wilcox on signed-rank test
(D)  sign test

47.When ranking combined data in a Wilcoxon signed rank test, the data that receives a rank of 1 is the

(A)  highest value
(B)  lowest value     
(C)   middle value
(D)  This can vary according to data

48.The collection of statistical methods that require assumptions about the population is known as

(A)  distribution free methods
(B)   non-parametric methods
(C)  parametric methods   
(D)   either a or b

49. The Spear man rank-correlation coefficient is

(A)  X  a correlation measure based on the average of data items
(B)    a correlation measure based on rank-ordered data for two variable
(C)    either a or b
(D)   none of the above

50.The level of measurement that allows for the rank ordering of data items is

(A)   nominal measurement
(B)  ratio measurement
(C)   interval measurement
(D)  ordinal measurement





BA5106 -STATISTICS FOR MANAGEMENT-UNIT-III-MCQ

April 11, 2021 0 Comments

 BA5106

STATISTICS FOR MANAGEMENT

UNIT-III- TESTING OF HYPOTHESIS-PARAMETRIC TESTS

MULTI CHOICE QUESTIONS

1.A _______ is a statement about the population parameter
 

(A)  Statistical Hypothesis
(B)    Null Hypothesis
(C)  Alternative Hypothesis
(D) Hypothesis

2. ________is a procedure that helps us to ascertain the likelihood of hypothesis population parameter being correct by making use of the sample statistic
 

(A)  Statistical Hypothesis
(B)  Null Hypothesis
(C) Test of Hypothesis 
(D)   Alternative Hypothesis

3. The statistical hypothesis that is set up for testing a hypothesis is known as  ________

(A) \choice  Statistical Hypothesis
(B)   Null Hypothesis 
(C)  Test of Hypothesis
(C)    Alternative Hypothesis   

4. _______is the hypothesis which is to be tested for possible rejection under the assumption it is true

(A)   Statistical Hypothesis
(B)   Test of Hypothesis
(C)   Null Hypothesis 
(D)    Alternative Hypothesis       

5. The negation of Null hypothesis is called the  __________

(A)  Statistical Hypothesis
(B)  Test of Hypothesis
(C)  Alternative Hypothesis  
(D)  Null Hypothesis           

6. The rejection region may be reresented by a portion of area on each of the two sides or by only one side of the normal curve and correspondingly the test is known as _________


(A) One tailed test
(B)   Two tailed test
(C)  Two side test
(D)   Not one tailed test      

7. The Standard deviation  of population is __________

(A)  $\mu$
(B)   $\sigma$
(C)  P
(D)  N         

8. Test of significance of single mean-large samples then  $S.E(\bar{x})=  $ _______ when  the standard deviation $\sigma$ of population is known

(A)   $\frac{\sigma}{\sqrt{n+1}}$
(B)   $\frac{\sigma}{\sqrt{n-1}}$
(C) $\frac{\sigma}{\sqrt{n}}$
(D) $\frac{\sigma}{\sqrt{n}+1}$      

9. Test of significance of single mean-large samples then  $S.E(\bar{x})=$ ______ when  the standard deviation $\sigma$ of population is unknown

(A)   $\frac{s}{\sqrt{n}+1}$
(B)  $\frac{s}{\sqrt{n+1}}$
(C)  $\frac{s}{\sqrt{n-1}}$
(D) $\frac{s}{\sqrt{n}}$
 

10. The sample size $n<30$ the student's t-statistic is defined as t=______ 

(A)  $\frac{\bar{x} - \mu}{S.E(\bar{x})+1}$
(B)   $\frac{\bar{x} \times \mu}{S.E(\bar{x})}$
(C)  $\frac{\bar{x}+\mu}{S.E(\bar{x})}$     
(D) $\frac{\bar{x}-\mu}{S.E(\bar{x})}$

11. Test of significance of Single Proportion-large samples then  $S.E(p)=__________$  when  the n is the sample size and P is population proportion

(A) $\sqrt{\frac{P(1+P)}{n}}$
(B)  $\sqrt{\frac{P(100-P)}{n}}$
(C) $\sqrt{\frac{P(1-P)}{n}}$ 
(D) $\sqrt{\frac{P(100+P)}{n}}$       

12. Test of significance of Single Proportion-large samples then  $S.E(p)=_________$  when  the n is the sample size and P is population percentage

(A)   $\sqrt{\frac{P(1+P)}{n}}$
(B)  $\sqrt{\frac{P(1-P)}{n}}$
(C)  $\sqrt{\frac{P(100+P)}{n}}$
(D)  $\sqrt{\frac{P(100-P)}{n}}$      

13.  Test of significance of Difference between two sample proportion for large samples  then  $S.E(p_1-p_2)=_______$  when  the population proportion $P_1$ and $P_2$ are known 

(A)  $\sqrt{\frac{P_1Q_1}{n_1}+\frac{P_2Q_2}{n_2}}$ 
(B)  $\sqrt{\frac{P_1Q_1}{n_1} -\frac{P_2Q_2}{n_2}}$    
(C)  $\sqrt{\frac{P_1Q_1}{n_1} \times \frac{P_2Q_2}{n_2}}$
(D)  $\sqrt{\frac{P_1Q_1}{n_1} / \frac{P_2Q_2}{n_2}}$      

14. Test of significance of Difference between two sample proportion for large samples  then  $S.E(p_1-p_2)=_______$  when  the population proportion $P_1$ and $P_2$ are unknown but sample proportion $p_1$ and $p_2$ are known

(A)   $\sqrt{\frac{p_1q_1}{n_1} -\frac{p_2q_2}{n_2}}$   
(B)  $\sqrt{\frac{p_1q_1}{n_1}+\frac{p_2q_2}{n_2}}$  
(C)  $\sqrt{\frac{p_1q_1}{n_1} \times \frac{p_2q_2}{n_2}}$
(D)  $\sqrt{\frac{p_1q_1}{n_1} / \frac{p_2q_2}{n_2}}$  

15. A sample is said to be a small sample if the size of the sample is _________

(A)   $n \geq 30$
(B)   $n=30$
(C)  $n>30$
(D)  $n<30$  

16.  A sample is said to be a large sample if the size of the sample is____________

(A)  $n \leq 30$
(B)  $n=30$
(C)  $n>30$
(D)  $n<30$

17. Test of significance of single mean-samll samples then  $S.E(\bar{x})=$  when  the standard deviation s and n size of sample

(A)  $\frac{s}{\sqrt{n}+1}$
(B)   $\frac{s}{\sqrt{n+1}}$
(C)  $\frac{s}{\sqrt{n}}$
(D)  $\frac{s}{\sqrt{n-1}}$

18. Test of significance of paired t-test then  $S.E(\bar{x_1}-\bar{x}_2)=$______

(A)  $\frac{S}{\sqrt{n}+1}$
(B)  $\frac{S}{\sqrt{n}}$
(C)  $\frac{S}{\sqrt{n+1}}$
(D)  $\frac{S}{\sqrt{n-1}}$

19. Test of signification of difference between two means-large samples then $S.E(\bar{x_1}-\bar{x_2})=$_________ when the population standard deviation $\sigma_1$  and $\sigma_2$ are known

(A)  $\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}$    
(B)  $\sqrt{\frac{\sigma_1^2}{n_1}-\frac{\sigma_2^2}{n_2}} $
(C)  $\sqrt{\frac{\sigma_1^2}{n_1} \times \frac{\sigma_2^2}{n_2}} $
(D)  $\sqrt{\frac{\sigma_1^2}{n_1} / \frac{\sigma_2^2}{n_2}} $  

20. Test of signification of difference between two means-large samples then  Z= _________ when the population standard deviation $\sigma_1$  and $\sigma_2$ are known

(A)   $\frac{\bar{x_1} / \bar{x_2}}{S.E(\bar{x_1}-\bar{x}_2} $
(B)  $\frac{\bar{x_1}-\bar{x_2}}{S.E(\bar{x_1}-\bar{x}_2} $ 
(C)  $\frac{\bar{x_1}+\bar{x_2}}{S.E(\bar{x_1}-\bar{x}_2} $
(D)  $\frac{\bar{x_1} \times \bar{x_2}}{S.E(\bar{x_1}-\bar{x}_2} $

21. Test of signification of difference between two standard deviation -large samples then $S.E(s_1-s_2)=$________ when the population standard deviation $\sigma_1$and $\sigma_2$  are known

(A)  $\sqrt{\frac{\sigma_1^2}{2n_1}-\frac{\sigma_2^2}{2n_2}} $
(B)  $\sqrt{\frac{\sigma_1^2}{2n_1}+\frac{\sigma_2^2}{2n_2}}$  
(C)  $\sqrt{\frac{\sigma_1^2}{n_1} \times \frac{\sigma_2^2}{n_2}} $
(D)  $\sqrt{\frac{\sigma_1^2}{n_1} / \frac{\sigma_2^2}{n_2}} $

22.  Test of signification of difference between two standard deviation -large samples then $Z=$________ when the population standard deviation $\sigma_1$and $\sigma_2$  are known

(A)  $\frac{s_1 / s_2}{S.E(s_1-s_2)}$
(B)   $\frac{s_1 \times  s_2}{S.E(s_1-s_2)}$  
(C)  $\frac{s_1 +s_2}{S.E(s_1-s_2)}$
(D)  $\frac{s_1-s_2}{S.E(s_1-s_2)}$ 

23.Test of signification of difference between two standard deviation -large samples then $S.E(s_1-s_2)=$________ when the population standard deviation $\sigma_1$and $\sigma_2$  are unknown

(A)  $\sqrt{\frac{s_1^2}{2n_1}-\frac{s_2^2}{2n_2}} $
(B)   $\sqrt{\frac{s_1^2}{n_1} \times \frac{s_2^2}{n_2}} $
(C)   $\sqrt{\frac{s_1^2}{n_1} / \frac{s_2^2}{n_2}} $
(D)  $\sqrt{\frac{s_1^2}{2n_1}+\frac{s_2^2}{2n_2}}$ 

24. Test of signification of difference between two standard deviation -large samples then $Z=$ _________ when the population standard deviation $\sigma_1$and $\sigma_2$  are known

(A)  $\frac{s_1 / s_2}{S.E(s_1-s_2)}$
(B)  $\frac{s_1 \times  s_2}{S.E(s_1-s_2)}$ 
(C)  $\frac{s_1-s_2}{S.E(s_1-s_2)}$
(D)  $\frac{s_1 +s_2}{S.E(s_1-s_2)}$

25. Test of signification of difference between two means -small samples then $ S^2=$_________ be the unbiased estimate of common population variance based on both the samples

(A)  $\frac{n_1s_1^2+n_2s_2^2}{n_1+n_2-2}$    
(B)  $\frac{n_1s_1^2-n_2s_2^2}{n_1+n_2-2}$
(C)  $\frac{n_1s_1^2 \times n_2s_2^2}{n_1+n_2-2}$
(D)  $\frac{n_1s_1^2 / n_2s_2^2}{n_1+n_2-2}$

 26. Test of signification of difference between two means -small samples then $ S.E(\bar{x_1}-\bar{x_2})=$_________

(A)  $S / \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$
(B)  $S\times \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$
(C)  $S + \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$
(D)  $S - \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$

27.  Test of signification of difference between two means -small samples then $ t=$_________

(A)  $  \frac{\bar{x_1}-\bar{x_2}}{S.E(\bar{x_1}-\bar{x_2})}$   
(B)  $  \frac{\bar{x_1} \times \bar{x_2}}{S.E(\bar{x_1}-\bar{x_2})}$
(C)   $  \frac{\bar{x_1}+\bar{x_2}}{S.E(\bar{x_1}-\bar{x_2})}$
(D)  $  \frac{\bar{x_1} / \bar{x_2}}{S.E(\bar{x_1}-\bar{x_2})}$

28. _________ refers to a test of hypothesis concerning two variance derived from two samples

(A)  T-test
(B)  F test   
(C)  Z -test
(D)  $\psi^2$-test

29. Test of hypothesis about the variance of two population $F=$________

(A)  $\frac{\hat{\sigma_1}^{2}}{\hat{\sigma_2}^2}$     
(B)  $\hat{\sigma_1}^{2} \times \hat{\sigma_2}^{2}$
(C)  $ \hat{\sigma_1}^{2} +\hat{\sigma_2}^{2} $
(D)  $\hat{\sigma_1}^{2} - \hat{\sigma_2}^{2} $

30.  The variance ratio is obtained by dividing the variance between the samples by the variance within the samples.This ratio forms the test  ___________

(A)  T-statistic
(B)  F statistic    
(C)  Z -statistic
(D)  $\psi^2$- statistic
\end{oneparchoices}

31. Sum of squares of variance amongst the columns $SSC=_______$ it is the sum of the squares of deviation between the columns or group means and the grand mean

(A)  $ r \sum (\bar{x_j} / \bar{x})^2 $
(B)  $ r \sum (\bar{x_j} \times \bar{x})^2 $
(C) $ r \sum (\bar{x_j}-\bar{x})^2 $     
(D)  $ r \sum (\bar{x_j}+\bar{x})^2 $

32. Sum of squares of variance amongst the columns $SSE=______$ it is the sum of the squares of variance  between  individual items and  the columns  means

(A)  $  \sum_i\sum_i (x_{ij}  + \bar{x}_j)^2 $
(B)  $  \sum_i\sum_i (x_{ij} \times  \bar{x}_j)^2 $
(C)   $  \sum_i\sum_i (x_{ij} / \bar{x}_j)^2 $
(D)  $  \sum_i\sum_i (x_{ij}-\bar{x}_j)^2 $

33. Mean of the square of columns Errors MSE=_______

(A)  $ \frac{SSE}{c(r+1)}$
(B) $ \frac{SSE}{c(r-1)}$    
(C)  $ \frac{SSE}{c(r \times 1)}$
(D)  $ \frac{SSE}{c(r)}$

34. Total sum of squares of variance SST=__________

(A)  $ \sum_{j}\sum_i x_{ij}^2 - C $
(B)   $ \sum_{j}\sum_i x_{ij}^2 / C $
(C)  $ \sum_{j}\sum_i x_{ij}^2 + C $
(D)  $ \sum_{j}\sum_i x_{ij}^2 \times  C $

35. The sum of the square of observation between the individual values and the grand mean $\bar{x}$ then SST=_______

(A)  SSC-SSE
(B) SSC+SSE   
(C)  SSC $\times$ SSE
(D)  SSC /SSE

36. The total variance comprise of both the explained and the unexplained variance and defined as total variance=_________

(A)  $\frac{SST}{n+1} $
(B)  $\frac{SST}{n-1} $   
(C)  $\frac{SST}{n\times 2} $
(D)  $\frac{SST}{n} $

37.The test statistic is the F-value or F-statistic and is defined as  F= ________

(A)  $MSC \times MSE $
(B)  $MSC -MSE $
(C)  $MSC +MSE $
(D) $\frac{MSC}{MSE}$     

38. Variance amongst columns (Mean square Column ) MSC=______

(A)  $  SSC-(c-1)$
(B)  $ \frac{SSC}{c-1}$    
(C)  $  SSC+(c-1) $
(D)   $ SSC \times (c-1)$

39. Variance amongst Error (Mean square Error ) MSE=______

(A)  $  SSE-c(r-1)$
(B)  $  SSC+c(r-1) $
(C)  $ \frac{SSE}{c(r-1)}$ 
(D)  $ SSC \times c(r-1)$

40. In a past General Social Survey, a random sample of men and women answered the question “Are you a member of any sports clubs?” Based on the sample data, 95% confidence intervals for the population proportion who would answer “yes” are 0.13 to 0.19 for women and 0.247 to 0.33 for men.Based on these results, you can reasonably conclude that 

(A) There is a difference between the proportions of American men and American women who belong to sports clubs.
(B)  There is no conclusive evidence of a gender difference in the proportion belonging to sports clubs
(C)  At least 16$\%$ of American women belong to sports clubs
(D)   At least 25$\%$ of American men and American women belong to sports clubs

41.  In hypothesis testing, a Type 2 error occurs when

(A)  The null hypothesis is not rejected when the null hypothesis is true
(B)  The null hypothesis is rejected when the null hypothesis is true
(C)  The null hypothesis is not rejected when the alternative hypothesis is true
(D)  The null hypothesis is rejected when the alternative hypothesis is true

42. Null and alternative hypotheses are statements about

(A)  it depends - sometimes population parameters and sometimes sample statistics
(B)  population parameters
(C)  sample parameters
(D) sample statistics.

43. A hypothesis test is done in which the alternative hypothesis is that more than 10% of a population is left-handed. The p-value for the test is calculated to be 0.25. Which statement is correct?

(A)  We cannot conclude that more than $10\% $of the population is left-handed    
(B)  We can conclude that more than $25\%$ of the population is left-handed
(C)  We can conclude that more than $10\%$ of the population is left-handed
(D)  We can conclude that exactly $25\%$ of the population is left-handed.

44. Which of the following is NOT true about the standard error of a statistic?

(A)  The standard error measures, roughly, the average difference between the statistic and the population parameter
(B)  The standard error is the estimated standard deviation of the sampling distribution for the statistic
(C)  The standard error increases as the sample size(s) increases 
(D)  The standard error can never be a negative number.

45. A result is called “statistically significant” whenever

(A) The null hypothesis is true
(B) The alternative hypothesis is true
(C)  The p-value is larger than the significance level
(D)  The p-value is less or equal to the significance level    

46. Consider a random sample of 100 females and 100 males. Suppose 15 of the females are left-handed and 12 of the males are left-handed. What is the estimated difference between population proportions of females and males who are left-handed (females - males)? Select the choice with the correct notation and numerical value

(A)  $p_1-p_2 =3 $
(B)  $ p_1 - p_2 = 0.03 $
(C)   $ \hat{p} - \hat{p_2} = 3$
(D)   $\hat{p_1} - \hat{p_2} = 0.03$

47. The confidence level for a confidence interval for a mean is

(A)   the probability the procedure provides an interval that covers the sample mean
(B)  the probability the procedure provides an interval that covers the population mean. }   
(C)  the probability of making a Type 1 error if the interval is used to test a null hypothesis about the population mean
(D)   the probability that individuals in the population have values that fall into the interval.

48.  A test of $H_0: \mu = 0$  versus $H_1: \mu > 0$ is conducted on the same population independently by two different researchers. They both use the same sample size and the same value of $\aleph  = 0.05$. Which of the following will be the same for both researchers?  

(A)  The p-value of the test
(B)  The value of the test statistic
(C) The power of the test if the true $\mu = 6$.
(D)  The decision about whether or not to reject the null hypothesis.

49.A test to screen for a serious but curable disease is similar to hypothesis testing, with a null hypothesis     of no disease, and an alternative hypothesis of disease. If the null hypothesis is rejected treatment will     be given. Otherwise, it will not. Assuming the treatment does not have serious side effects, in this scenario it is better to increase the probability of: 

(A)  making a Type 1 error, not providing treatment when it is needed.
(B)  making a Type 2 error, providing treatment when it is not needed.
(C)  making a Type 1 error, providing treatment when it is not needed.   
(D)  making a Type 2 error, not providing treatment when it is needed.

50. The average time in years to get an undergraduate degree in computer science was compared for men and women. Random samples of 100 male computer science majors and 100 female computer science majors were taken. Choose the appropriate parameter(s) for this situation.

(A)  One population proportion p.
(B)  Difference between two population proportions $p_1 - p_2$
(C)  One population mean $\mu_1$
(D)  Difference between two population means $ \mu_11 -\mu_2$  


BA5106-SM MCQ ALL UNIT DOWNLOADED

Saturday, April 10, 2021

BA5106-STATISTICS FOR MANAGEMENT-UNIT II-MCQ

April 10, 2021 0 Comments

 BA5106

STATISTICS FOR MANAGEMENT

UNIT-II- DISTRIBUTION AND ESTIMATION

MULTI CHOICE QUESTIONS

 

1. ________  in  statistics means the whole of the information which comes under the purview of statistical investigation

(A) trial
(B) event  
(C) sample  
(D) Population
 
2. A part of the population selected for study is called  _________
 
(A) Continuous
(B) event 
(C) Sample
(D) infinite population     
  
3.The number of individuals included in the _______ sample is called the size of the sample
 
(A)  infinite Sample 
(B) finite Sample
(C)  definite 
(D) indefinite      
 
4. Any statistical measure computed from population data is  known as  _______
 
(A) Sample  
(B) Parameter
(C)  statistic
(D) Data    
   
5.Any statistical measure computed from sample data is  known as   ________
 
(A) Parameter
(B) statistic
(C) Sample  
(D)  data  
 
6.The mean of population is ________
 
(A)$\mu$
(B) $\sigma$
(C) P
(D)N       
  
7. The Standard deviation  of population is_________
 
(A)  $\mu$
(B) $\sigma$
(C) P
(D) N         
 
8. The Population  of population is _______
 
(A)  $\mu$
(B) $\sigma$
(C) P
(D) N    
         
 
9.The Size  of population is _______

(A)  $\mu$
(B) $\sigma$
(C) P
(D) N    
   
10.The Size  of Sample is ________
 
(A) $\bar{x}$
(B) s
(C) p        
(D)n 
 
11.The Population  of Sample is ______
 
(A) $\bar{x}$
(B) s
(C) p        
(D)n
    
12. The Standard deviation  of Sample is ________
 
(A) $\bar{x}$
(B) s
(C) p        
(D)n
 
13.The Mean   of Sample is _________
 
(A) $\bar{x}$
(B) s
 
(C) p        
(D)n 
 
14._______ the procedure of selecting a sample from the population
 
(A) parameter
(B) population
(C) Sampling
(D) mean
 
15. ______the method of selecting of a sample in such a way that each and every member of population or universe has an equal chance or probability of being included in the sample 
 
(A) Multi-stage Sampling
(B)  Systematic Sampling
(C) Stratified Sampling
(D)  Simple Random Sampling

16._________the population is divided into strata (groups) before the sample is drawn 
 
(A) Multi-stage Sampling
(B)  Systematic Sampling
(C)  Stratified Sampling     
(D)  Simple Random Sampling
 
17._________method every elementary unit of the population is arranged in order and the sample units are distributed at equal and regular interval 

(A) Multi-stage Sampling
(B) Systematic Sampling            
(C) Stratified Sampling
(D) Simple Random Sampling
 
18.__________Sample of elementary units is selected in stages.Firstly a sample of cluster is selected and from among them a sample of elementary units is selected 
 
(A)Multi-stage Sampling       
(B) Systematic Sampling  
(C)  Stratified Sampling
(D)  Simple Random Sampling
  
19.The estimate of a population parameter given by a single number is called the __________ of the parameter 
 
(A)  Point Estimation}    
(B)  Interval Estimation
(C)  Confidence Interval
(D)   Fiducial Limits   
 
20.The probability that we associate with an interval is called the _______     
 
(A) Interval Estimation
(B) Confidence Interval }
(C)  Point Estimation
(D) Fiducial Limits  
 

21.  The ________ proportion P is the ratio of the number of elements possessing a characteristic to the total number of elements in the population


(A)  sampling
(B)   parameter
(C)  Population   
(D)  Sample

22.The _______proportion p is the ratio of the number of elements possessing a characteristic to the total number of elements in the sample


(A)  sampling
(B)   parameter
(C)  Population  
(D)  Sample
 

 23.The mean of sampling distribution of p  ________ the population proportion .,i.eE(p)=P
 

(A)   Greater than
(B)  Less than
(C)  Not equal
(D)  Equal


24. t-Distribution is a symmetrical distribution with mean  _________

(A)  two
(B)  not zero
(C) zero         
(D)  one  

25.The shape of the curve of t-distribution varies with the degrees of freedom.The degree of freedom is defined as ___________

(A) n-1     
(B)  n+1
(C)  n-2
(D)  n+2
 

26. Sampling distribution of t does not depend on population parameter but it depends only on v= ____________


(A) n-1     
(B)  n+1
(C)  n-2
(D)  n+2

27. $S.E(\bar{x})=$_________  when $\sigma$ the standard deviation of the normal population $\sigma$ is known

(A)  $  \frac{\sigma}{n}$
(B)  $  \frac{\sigma}{\sqrt{n}}$     
(C)  $  \frac{1}{\sqrt{n}}$
(D)   $  \frac{1}{n}$
 

28.$S.E(\bar{x})=$_________ when $\sigma$ the standard deviation of the normal population $\sigma$ is not known 

(A) $  \frac{s}{n-1}$
(B)  $  \frac{s}{\sqrt{n-1}}$    
(C)  $  \frac{1}{\sqrt{n-1}}$
(D)  $  \frac{1}{n-1}$
 

29.   Confidence Interval=_______ when $\sigma$ is known and population is normal or any population with large  n  


(A)  $[ \bar{x}-\frac{\sigma}{n} \times Z_{\alpha},\bar{x}+\frac{\sigma}{n} \times Z_{\alpha}] $ 
(B)  $[ \bar{x}\times \frac{\sigma}{n} \times Z_{\alpha},\bar{x}+\frac{\sigma}{n} \times Z_{\alpha}] $
(C)  $[ \bar{x}-\frac{\sigma}{n} \times Z_{\alpha},\bar{x} \times \frac{\sigma}{n} \times Z_{\alpha}] $
(D)   $[ \bar{x} \times \frac{\sigma}{n} \times Z_{\alpha},\bar{x} \times \frac{\sigma}{n} \times Z_{\alpha}] $
 

30.  Confidence Interval=_______-  when $\sigma$ is unknown with large  n
 

(A)  $[ \bar{x}-\frac{s}{\sqrt{n-1}} \times Z_{\alpha},\bar{x} \times \frac{s}{\sqrt{n-1}} \times Z_{\alpha}] $
(B)  $[ \bar{x}\times \frac{s}{\sqrt{n-1}} \times Z_{\alpha},\bar{x}+\frac{s}{\sqrt{n-1}} \times Z_{\alpha}] $
(C) $[ \bar{x}-\frac{s}{\sqrt{n-1}} \times Z_{\alpha},\bar{x}+\frac{s}{\sqrt{n-1}} \times Z_{\alpha}] $  
(D)  $[ \bar{x} \times \frac{s}{\sqrt{n-1}} \times Z_{\alpha},\bar{x} \times \frac{s}{\sqrt{n-1}} \times Z_{\alpha}] $

 

31. The Poisson  Distribution of Moment measure of kurtosis $(\gamma_2) ___________

(A)  $\sqrt{\lambda}$
(B)  $\lambda$
(C) $ \frac{1}{\sqrt{\lambda}}$     
(D)   $\frac{1}{\lambda} $ 

32. The interval estimation of a population parameter $\theta$ is the estimation of the parameter $\theta$ with the help of the interval ___________


(A)  $[t-s,t+s] $    
(B) $[ts,ts] $
(C) $[ts,t+s] $
(D)  $[t-s,ts] $

33. The population size is infinitely large or the sample is drawn with replacement,The Standard Error of sample proportion is $S.E(p)=$ ______ if P is known


(A)   $\frac{P}{n}$
(B)  $\frac{PQ}{n}$     
(C)  $\frac{Q}{n}$
(D)  $\frac{PQ}{n}$
 

34. The population size is infinitely large or the sample is drawn with replacement,The Standard Error of sample proportion is $S.E(p)=$ ______  if P is unknown
 

(A)\choice  $\frac{p}{n}$
(B)  $\frac{pq}{n}$     
(C)  $\frac{q}{n}$
(D) $\frac{pq}{n}$

35. The population size is finite  and  the sample is drawn without replacement,The Standard Error of sample proportion is $S.E(p)=$ ________  if P is known

(A) $\frac{Q}{n}\times\sqrt{\frac{N-n}{N-1}} $
(B) $\frac{PQ}{n}\times\sqrt{\frac{N-n}{N-1}} $     
(C)  $\frac{P}{n}\times\sqrt{\frac{N-n}{N-1}} $
(D)  $\frac{PQ}{n}+\sqrt{\frac{N-n}{N-1}} $

36. The population size is finite  and  the sample is drawn without replacement,The Standard Error of sample proportion is $S.E(p)=$ ______  if P is unknown

(A)  $\frac{q}{n}\times\sqrt{\frac{N-n}{N-1}} $
(B)  $\frac{pq}{n}\times\sqrt{\frac{N-n}{N-1}} $     
(C)  $\frac{p}{n}\times\sqrt{\frac{N-n}{N-1}} $
(D) $\frac{pq}{n}+\sqrt{\frac{N-n}{N-1}} $

37. The standard deviation of the sampling distribution of sample mean. if is denoted by $\sigma_{\bar{x}}$ and is given by $\sigma_{\bar{x}}=$_______  where $\sigma$ is the standard deviation of population and n is the sample size

(A)  $\frac{\sigma}{\sqrt{n^2}}$
(B)  $\frac{\sigma}{\sqrt{n+1}}$
(C)   $\frac{\sigma}{\sqrt{n-1}}$
(D)  $\frac{\sigma}{\sqrt{n}}$   

38. The proportion of all possible samples of the same size drawn from a population.It is denoted by $s_p$ and is given by  $s_p= $   If P is known

(A)  $  \sqrt{\frac{PQ}{n^2}}$
(B)  $ \sqrt{\frac{PQ}{n}}$
(C)  $  \sqrt{\frac{PQ}{n-1}}$
(D)   $  \sqrt{\frac{PQ}{n+1}}$

39.___________means drawing conclusions about some matters on the basis of certain results 

(A)  Tests of Significance
(B) Statistical Inference   
(C) Statistical Estimation
(D)   Statistic

40. Sampling theory helps in __________ about the population characteristics on the basis of suitable statistic computed from a sample drawn from such parent population 

(A)  Tests of Significance}
(B) Statistical Inference 
(C)  Statistical Estimation
(D)  Statistic

41. ________it helps in estimating an unknown the population parameter computed from the sample drawn from such parent population 

(A) Statistical Inference  
(B)  Tests of Significance
(C) Statistical Estimation 
(D)  Statistic

42._______  is the method of sampling by which a sample is drawn from a population based entirely on the personal judgement of the investigator.It is also known as Judgement Sampling or Deliberate Sampling

(A)  Cluster Sampling
(B)  Purposive Sampling    
(C) Quota Sampling
(D)   Convenience Sampling

43. ________ involves arranging  elementary items in a population into heterogeneous subgroups that are representative of the overall population 

(A)  Cluster Sampling     
(B)  Purposive Sampling
(C)  Quota Sampling
(D)   Convenience Sampling

44. ___________quotas are fixed according to the basic parameter of the population determined earlier and each field investigator is assigned with quotas of number of elementary units to be interviewed

(A)  Purposive Sampling
(B)   Cluster Sampling
(C) Quota Sampling      
(D)   Convenience Sampling

45.  _________a sample is obtained by selecting convenient population elements from the population 

(A)  Purposive Sampling
(B)   Cluster Sampling
(C) Quota Sampling      
(D)   Convenience Sampling     

46. _________a number of sample lots are drawn one after another from the population depending on the results of the earlier samples drawn from the same population

(A)   Purposive Sampling
(B)   Cluster Sampling
(C)  Quota Sampling
(D)  Sequential Sampling 

47.  A statistics $t=t_n=t(x_1,x_2,x_3,\dots,x_n)$ based on the sample size n is said to be ________estimator of the parameter $\theta$ if $t_n \to \theta $ as $ n \to \infty$   

(A)  Efficiency
(B)  Consistency     
(C)  Sufficiency
(D)  Unbiasedness

48. ________ an estimator with lesser variability is said to be more efficient and consequently more reliable than the other  

(A) Consistency
(B)  Sufficiency
(C)  Efficiency    
(D)  Unbiasedness

49. A statistic $t=t(x_1,x_2,x_3,\dots,x_n)$ is said to b a _________ estimator of parameter $\theta$ if it contains all the information in the sample regarding the parameter.   

(A) Consistency
(B)  Efficiency
(C)  Sufficiency   
(D)  Unbiasedness

50.  A statistic $t=t(x_1,x_2,x_3,\dots,x_n)$ is said to be an  _______estimate of the corresponding population parameter $\theta$ ,if $E(t)=\theta$ the mean value of the sampling distribution of the statistic t is equal to the parameter of the population

(A)  Consistency
(B)  Efficiency
(C)  Sufficiency
(D) Unbiasedness 


BA5106-SM MCQ ALL UNIT DOWNLOADED