🔍 Newton-Raphson Method—Find the Root of
ex - x3 - cos(25x) = 0
Given: Initial guess x₀ = 4.5
Method: Newton-Raphson
xₙ₊₁ = xₙ - f(xₙ) / f'(xₙ)
🔢 Step-by-Step Iterations:
Let
f(x) = ex - x3 - cos(25x)
f'(x) = ex - 3x2 + 25sin(25x)
✅ I – Iteration:
x₀ = 4.5
f(4.5) = e⁴⋅⁵ - 4.5³ - cos(25×4.5) = -1.9347
f'(4.5) = e⁴⋅⁵ - 3×4.5² + 25sin(25×4.5) = 15.2061
x₁ = 4.5 - (-1.9347 / 15.2061)
x₁ = 4.6272
✅ II – Iteration:
f(4.6272) = 4.0024 ; f'(4.6272) = 51.2514
x₂ = 4.6272 - (4.0024 / 51.2514)
x₂ = 4.5491
✅ III – Iteration:
f(4.5491) = -0.4011 ; f'(4.5491) = 47.1963
x₃ = 4.5491 - (-0.4011 / 47.1963)
x₃ = 4.5576
✅ IV – Iteration:
f(4.5576) = 0.0197 ; f'(4.5576) = 51.6997
x₄ = 4.5576 - (0.0197 / 51.6997)
x₄ = 4.5572
🧠 Final Answer:
x = 4.557 (Correct to 3 decimal places)
📘 Note: The Newton-Raphson method is powerful for approximating roots. Always check convergence by comparing iterations.
No comments:
Post a Comment